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Vortex multipoles—consisting of a core of vorticity closely surrounded by several smaller vorticity concen-
trations of opposite sign—are obtained from the evolution of vorticity in two-dimensional simulations. Using
a meshless vortex method, we obtained triangular and square vortices, surrounded by three and four satellites,
respectively. These structures have only been observed before to emerge from zero-circulation initial condi-
tions. We also observed a pentagon vortex. Here, we obtain compound vortices of nonzero total circulation, and
suggest a gamut of multipolar asymptotic solutions to the Navier-Stokes equations.
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The most compelling phenomenon of two-dimensional
�2D� turbulent flow is the self-organization of vorticity and
the emergence of so-called coherent structures. Such a phe-
nomenon has relevance for planetary flows, since the atmo-
sphere and oceans are very close to two dimensional. Phe-
nomena such as the longevity of eddies in the oceans, the
creation of microclimates, and barriers to mixing come to
mind �1�. Coherent vortices also appear in astrophysical
problems, such as the Great Red Spot of Jupiter �2�. More-
over, the physics of relaxing 2D turbulence is analogous to
the dynamics of pure-electron plasmas, allowing for signifi-
cant experimental evidence of coherent vortex structures to
be obtained from plasma experiments �3–5�.

The study of coherent structures can be traced to the now
classical numerical results of freely decaying turbulence �6�
and the experimental realization of the Von Kármán vortex
street in soap films �7�. In the first case, it was shown that
vorticity concentrations arise spontaneously from a random
field, and that they tend to assume axisymmetric shapes; the
second gave a striking visualization of vortex dipoles. Thus
arrived the two most common coherent structures: the mono-
pole and the dipole. The tripole is a more rare object, seen to
form from the collision of two dipoles �8� and appearing
spontaneously in simulations of forced, homogeneous 2D
turbulence �9�. The striking �and accidental� observation of a
tripole in the laboratory was first reported in �10�, and it was
only later that a structure that could perhaps be a tripole was
observed in the oceans for the first time �11�. Several inves-
tigations into this third coherent structure have followed,
both experimental �12� and numerical �13,14�. Except for
dipole collision, in all other occurrences the tripole emerged
from the instability of axisymmetric shielded monopoles
�i.e., a central vortex core surrounded by a ring of opposite
sign vorticity, with zero total circulation�. A surprising ex-
ception is the more recent numerical observation of a tripole
obtained from the relaxation of a monopole to which a qua-
drupolar perturbation of moderate amplitude has been added
�15�. In this case, it was expected that the perturbation would
decay due to shear-enhanced diffusion �16,17�, which occurs
for small perturbations. But a large quadrupolar perturbation
�Eq. �2�, below, with m=2� introduces negative vorticity and
markedly alters the evolution. Thus, it was suggested that a
threshold amplitude of the quadrupole perturbation separates
the basins of attraction of the monopole and tripole.

This Rapid Communication presents the result that a non-

axisymmetric component added to a Gaussian vortex can
result in the reorganization of vorticity to form higher mul-
tipoles. Thus, the tripole found by Rossi et al. �15� is just one
of a variety of vortex multipole solutions with nonzero total
circulation. A six-pole nonaxisymmetric component �Eq. �2�
with m=3�, of sufficient amplitude, results in the reorganiza-
tion of the flow into a triangular vortex. This rare object of
2D vortex flow, consisting of a core of vorticity with trian-
gular shape surrounded by three satellites of opposite sign
vorticity, has only been seen before emerging from shielded
monopolar vortices; the profile of the initial shielded mono-
pole in this case is steeper than those that generate tripoles
�18,19�. We have found also that an eight-pole nonaxisym-
metric component �m=4� is capable of generating a square
vortex, in which four satellites surround a square-shaped
core, and a ten-pole nonaxisymmetric component results in a
pentagon vortex. These structures turn out to be unstable,
and the vorticity re-organizes by satellite merging to form a
tripole. As mentioned, when these exotic multipole vortices
emerge from shielded monopoles, they have zero net circu-
lation. In the present situation, they can emerge from a vari-
ety of initial conditions, and result in satellites of assorted
strengths �relative to the core�.

To be more precise, consider a flow with initial condition
given by a Gaussian vortex with an added nonaxisymmetric
component of m-fold symmetry; that is, �=�0+�� with

�0�x� =
1

4�
exp�− �x�2

4
� , �1�

���x� =
�

4�
�x�2 exp�− �x�2

4
�cos m� , �2�

where �0 stands for the base vortex, �� for the nonaxisym-
metric component, and �=arg�x�. We will use the term “per-
turbation” for ��, even though it is of O�1�, for convenience.
When m=2, it was found by Rossi et al. �15� that a tripole is
obtained with �=0.25 at a Reynolds number Re=104, where
Re=� /� �total circulation divided by the viscosity�. Figure 1
shows the vorticity evolution for this case. A vortex method
has been used in this work, introduced by Barba et al. �20�;
the numerical method is completely mesh-free and is char-
acterized by very low numerical dissipation. For the simula-
tion of Fig. 1, vortex particles were placed on a triangular
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lattice initially, with equivalent square interparticle spacing
h=0.15; the initial core radius of particles was �=0.1875,
growing to a maximum radius �due to diffusion� of �
=0.1901 before spatial adaption. The number of particles
was N�t=0�=7138 and N�t=800�=9792. The present results
would be difficult to obtain with standard mesh-based meth-
ods, which suffer from numerical diffusion. Spectral methods
are often preferred for vortex dynamics applications for this
very reason, but then the use of hyperviscosity alters the
physics, resulting, for example, in a different time scale for
shear diffusion.

Consider now the striking result of using threefold sym-
metry in the perturbation. As shown in Fig. 2, the flow now
reorganizes into a triangular vortex. Once revealed, this may
seem as a natural result; it has not, however, been reported
before, to our knowledge.

The triangular vortex has been previously discovered
�18,19,21,22�, but under very special conditions: emerging
from the growth and saturation of instabilities in a strongly
unstable monopolar vortex. The initial vorticity of the mono-
pole depends on a steepness parameter 	 as follows: �	

= �0.5	r	−1�e−r	
. To obtain a triangle vortex, a steep initial

profile is required with 	
5. Figure 3 shows the evolution
for 	=7, where the initialization with vortex particles was
seeded with a perturbation of the form ri,new=ri,old�1
+� sin k�� with k=3, �=0.001, and ri the radial position of
each vortex particle �29�. A similar result was obtained by
Kloosterziel and Carnevale �22� using spectral methods. Ex-
perimental observations of the triangle vortex have been
made both in rotating flow �19,21,23� and in stratified fluid
�24�.

Using the initial condition in Eqs. �1� and �2� with m=3,
we obtain a range of triangle vortices, with the strength of
the satellites becoming weaker as � is decreased, until the
vortex finally relaxes to axisymmetry. Thus, similarly to the
tripole, it appears that a threshold perturbation amplitude
separates the monopole and triangle vortices as asymptotic
�quasisteady� states.

Note that the triangle vortex shown in Fig. 2 differs from
that in Fig. 3 in the strength of the satellites, as well as the
normalization. In the latter �shielded� case, the vorticity mag-
nitude of the satellites and core is �1. In Fig. 2, the initial
condition has �max=0.1014 and �min=−0.0408, whereas at
t=800 �max=0.0834 and �min=−0.0255. Thus, the satellite
peaks have a magnitude of only 30% compared to the vortex
core. Also, the turnaround time �=4� /�max for the shielded
case is ��12 and it is ��158 for the vortex of Fig. 2 �which
explains the different time scales in the figures�.

The numerical parameters for the simulation in Fig. 2 are
as follows: square-equivalent interparticle spacing h=0.12,
initial vortex blob size �0=0.15, maximum size �max
=0.1633, number of particles Nt=0=10 660, and Nt=800
=12 586. For the simulation in Fig. 3 h=0.02, �0=0.025,
�max=0.0287, N0=21 216, and �=10−4.

For the flow of Fig. 2, it is most interesting to look at the
evolution of the perturbation vorticity, obtained by subtract-
ing the Lamb-Oseen vortex solution at each time slice; this is
shown in Fig. 4. Note how the negative part of the perturba-
tion drifts to the outside of the base Gaussian eddy, while the
positive part coalesces toward the center and is subject to
spiral wind-up. One could speculate that this is due to the
“transverse drift” of vortices in a vorticity gradient �25�,
which is the same as vortex drifting in the  plane �26�, but
this needs further study. Subsequently, the positive perturba-

FIG. 1. Evolution of the tripolar vortex: 14 equally spaced con-
tour levels of �; Re=104, �=0.25.

FIG. 2. Evolution of a triangular vortex: 14 equally spaced con-
tour levels of �; Re=104, �=0.55.

FIG. 3. Emergence of a triangular vortex from the saturated
instability of a shielded monopole; 14 equally spaced contours of
vorticity �black is negative, white is positive�.

FIG. 4. Grayscale levels of perturbation vorticity; case Re
=104, �=0.55 �cf. Fig. 2�. Black is negative, white is positive.
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tion becomes homogenized in the center of the vortex, and
the negative part forms well-defined satellite vortices. Weak
positive filamentary debris surrounds the whole structure.

As mentioned, smaller values of � result in weaker and
weaker satellites, but the same structure. See for example
Fig. 5, showing the logarithm of ��� for the case �=0.3.
When �=0.25, we observe the formation of a tiny closed
zero contour of vorticity which immediately dissipates; even
smaller values of � result in complete axisymmetrization,
with no intermediate triangle state.

A test of the stability of the triangle vortex was performed
as follows. For a case developing moderate satellites, the
flow was evolved until a time when the triangle vortex seems
to be quasi steady. Then, the computational vortex particles
were randomly perturbed; the resulting state is shown in the
first frame of Fig. 6. Allowing this state to evolve freely, the
perturbations smooth out, and the flow returns to a well-
formed triangle vortex; see Fig. 6. This experiment indicates
that the triangle vortex found here is a stable structure.

Naturally, the above results lead us to explore the effect of
having an eight-pole perturbation �m=4�. The nonlinear satu-
ration of mode-4 instability generates a square vortex from
very steep shielded monopoles �19,22�. This vortex was
found to quickly break down, transitionally forming a tripole
that further disintegrates into two dipoles. A square vortex
has also been observed in stratified fluid experiments �30�. In
the present situation, a square vortex can be formed with
eight-pole perturbations from �=0.6 upward, with stronger
satellites for larger �. It was observed to undergo satellite
merging and reorganize into a tripole. Moreover, a pentagon
vortex can be formed from ��1.0 upward; this vortex ap-
pears to be very unstable, and we observe merging of two
pairs of satellites, to produce an asymmetric tripole. Figure 7
shows the evolution of the square and pentagon vortices and
their transformation into tripoles.

In conclusion, we have shown that 2D vortex multipoles
can be obtained from the re-organization of vorticity using
various nonshielded initial conditions. The resulting multi-
poles do not have zero net circulation, and both the tripole
and triangle vortex appear to be stable. Previous studies have
focused on the growth and saturation of instabilities of
shielded monopoles, and have indeed suggested that only the
tripole and the triangular vortex are stable. We observe that
the square vortex reorganizes by satellite merging into a tri-
pole, whereas the pentagon vortex evolves into an asymmet-
ric tripole. It is our belief that the mechanism operating in
the emergence of multipoles from unstable shielded mono-
poles may be at play as well in the present situation of vary-
ing strength satellites. This mechanism is not well under-
stood, and is worthy of further study. The results presented
here will be valuable in this undertaking.

There are vortical structures in plasmas that are remark-
ably similar to the multipoles, exhibiting an asymmetry able
to persist with very slow decay. For example, an elliptical
core with two surrounding cat’s eyes is shown in �3�,
whereas a triangular core with three cat’s eyes appears in

FIG. 5. Shadowed plot of log10���, emphasizing the boundary of
the satellite vortices; case with �=0.3 and Re=104.

FIG. 6. Line contours of perturbation vorticity for a case with
�=0.7 and Re=104, where the flow was perturbed at t=1600 by
randomly moving all vortex particles.

FIG. 7. Plots of � for higher multipoles. Top two rows: square
vortex; Re=104, �=0.7, m=4. Bottom two rows: pentagon vortex;
Re=104, �=1.2, m=5.
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�27�. These structures, called quasimodes, arise from initial
conditions where vorticity is of only one sign—unlike the
hydrodynamic multipoles. They are characterized by an an-
gular frequency �q and decay rate �. The question arises of
whether core quasimodes may be the cause of multipole vor-
tex formation. We can present evidence that they are likely to
be different objects. The m=2 quasimode frequency for a
Gaussian vortex has been calculated to be �q=0.226�0�0�
�28�. For the initial condition in this paper, �0�0�=1/4�,
giving �q=0.018. For the tripole in Fig. 1, after the initial
rearrangement the angular velocity was found to oscillate

around 0.01; this is quite different from �q, and thus we
conclude that the mechanism of multipole formation is un-
likely to be caused by a quasimode.
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